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Chaotic character of two-soliton collisions in the weakly perturbed nonlinear Schrdinger equation
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We analyze the exact two-soliton solution to the unperturbed nonlinear@abes equation and predict that
in aweaklyperturbed systerti) soliton collisions can bstronglyinelastic,(ii) inelastic collisions are of almost
nonradiating typeiii ) results of a collision are extremely sensitive to the relative phase of soliton§yautide
effect is independent on the particular type of perturbation. In the numerical study we consider two different
types of perturbation and confirm the predictions. We also show that this effect is a reason for chaotic soliton
scattering. For applications, where the inelasticity of collision, induced by a weak perturbation, is undesirable,
we propose a method of compensating it by perturbation of another type.
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[. INTRODUCTION do not forbid a strongly inelastic collision between two
NLSE solitons[16]. This is physically important because
Influence of perturbations of various types on interactiontwo-soliton collisions in NLSE are more probable compared
of solitons in different integrable nonlinear equations hago three-soliton collisions. The same concerns SGE, where
been studied thoroughly during last decafteg]. Different ~ three- and four-soliton collisions are easily observed in kink-
effects such as inelasticity of soliton collisions, mutual trap-breather and breather-breather collisi¢as5).
ping, collapse of solitons etc. have been reported as common The aim of this paper is to show that in perturbed NLSE
sequences of violated integrabilift—11]. It has been also €ven two-soliton collisions can be strongly inelastic with a
reported that perturbation can be responsible for chaotic solegligible amount of radiation and that the effect is essen-
ton scattering11—17. In the vast majority of studies, the tially determined by the internal parameters of solitons but
inelastic soliton collisions and other effects of perturbationnot by the particular type of perturbation. We also show that
are related to the existence of solitons’ internal moge, this effect is a reason for chaotic soliton scattering.
e.g., Ref.[10]). The internal modes can play an important The perturbation parameter is taken to be extremely weak
role only if the perturbation parameter is not too small. As asO that internal and radiative modes cannot play any signifi-
consequence, the reported effects are usually accompanié@nt role. Therefore, the traditional mechanisms of inelastic
by significant radiation of energy and the case of a wealécatteringRefs.[8,11,12,14) should be excluded from con-
perturbation is usually considered as the case of a small infideration. . _ .
portance. However, a nontrivial effect of perturbation that is On this purpose we integrate numerically the set of dis-
almost radiationless energy exchange between colliding solcrete NLSE with small discreteness parameterand small
tons has been reported for weakly discrete sine-Gordon equétintic term (e<1):
tion (SGB [9,15] and nonlinear Schobnger equation

(NLSE) with small quintic perturbatiori8]. In both cases,  dy, 1 5 4
the effect was observed threesoliton collisions. Recently,  17qz * T(‘/’n—l—zwﬁ Yo+ 1) F |l “Yn= el | .
the strongly inelastic radiationless collision w¥o solitons T 1)

was observed numerically in NLSE for weak discreteness
[16,18. We suppose that strongly inelastic collision is pos-

sible when the number of soliton components is greater thaHifferent fields of physics, e.g., nonlinear optics, dynamics of

the number of quantities, conservéalith a high accuracy biomolecules, self-trapping phenomena etc., it is also used to
for the perturbed equation. In SGE, the inelastic collision can e ! pping phen o .
alyze different types of localized modes in the discrete

. a
be observed when at least three one-component solitons me\?re%rsion of SGH2].

n in here are tw nservi ities, mo- ) . .
at one point, because there are two conserved quatities, mo Assuming thatA 7 is small, one can transform E({) into

mentum and energy{9,15. NLSE soliton is a two- . )
component one and there are three conserved quantitiefg,noWlng continuum perturbed NLSE

norm, momentum, and energy. Thus, the conservation laws

Besides numerous applications of the discrete NLSE in

) 1 - 4 A7
| lﬁg"‘ E‘pﬂ'—}_'lﬂ lﬂ— E|¢| lﬂ_ ﬁwTTTT' (2)
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In the absence of perturbatior€0,A7—0), NLSE is 1(ael” . i
known to be exactly integrable, and it supports propagation  ¥(¢,7)= ohB [a1—ax+ (V1= V) +2iasth B,
of envelope solitons, which recover their properties after col- !

lision with each other, i.e., collide elastically. The integrable ae'” - 5
unperturbed NLSE has an infinite number of conservation X(V1=Vy)]+ Ch—IBZ[aZ_a1+(V2_V1)
laws. The conservation laws, important for analysis of soli-
ton collisions, are the conservation of norm ]

+2ia;th B1(Vo— V)], (7)

N:f_m|¢|2d7- 3 where
D=(a;—a,)?+(Vy—Vy)?
momentum " | g |
c —B,]—cog y1—
28,8, B1— B2 Y1~ 72 , ®
A . chpichp,
P=i | (y—yy*)dr, @
Bi=aj[t— 7= Vi(§-§)],

and energy Yi=Vi(r=7)+ (@ = V(- §)/2,

1 (= and¢;,r; are the effective coordinate shiftg={1,2). Here-
E= Ef (I, 2=y d. (5)  after in the paper, we use indgx 1,2 when refer to both
o solitons. If até=0 the solitons are at positiords;, and d,

) ) i with initial phasesp; and ¢,, then their effective coordinate
For the system of two solitons having amplitudes a,  ghifts are found as

and velocitiesv,, V,, the above conservation laws take the

form sgn(d;_;—dj)(AV;/a;+ D))+ ¢;
§=-2 2, \,2 '
2 2 aj+vj
NZZE aj, P=42 a;Vi, A
=] “~
) J Tj:Sgr(dg_j_dj)a_‘f'ngj"‘dj, (9)

i

3

where
; (6)

1
2
ajVi— 34

2
E=>
j=1

(a;+ap)?+(Vy—V,)?
(ay—a,)%+ (V1—V,)?)

(10

1
A weak perturbation reduces a completely integrable sys- 2 :
tem to a nearly integrable one, and conservation I s(5)
are, generally speaking, fulfilled only approximately. How- ~ ®;=arga’—aj ;+(V;—V,)?+i2az_;(V;—=Va_))],
ever we can claim that strongexchange in norm, momen- (11
tum, and energy between two colliding solitons is, in prin- .

9y 9 P sgn(x)=—1,0,1 forx<0, x=0, andx>0, respectively, and

ciple, possible in aweakly perturbed system because the * ; d to ai | in the int I
exchange is not forbidden by the conservation laws that ei_unc lon arg 1S supposed to give values In the interva

tablish only three relations between four soliton parameter .0’277)' . . L . )

In the following, we demonstrate numerically that such ex- Thus a particular two—s_ollton soI_ut|on IS umqu_e_ly defined

change does really happen, and it becomes very strong in.& .elght parameters: §o.l|.ton amplitudas, velocmes\_/,-,

specific range of solitons’ parameters even in the case of Jitial positionsd; , and initial phaseg; . In our calculations

weak perturbation. we ta.\keaj.>0 bepause thg F:_hange of thg sign of soliton’s
The paper is organized as follows. In Sec. II, the exac@MPlitude is equivalent to initial phase shift by

two-soliton solution to unperturbed NLSE is analyzed, and 1he angular frequency, period of oscillationT, and

the possibility of strong inelasticity of collision is predicted Wavelengthh of a soliton can be expressed in terms of its

in a certain interval of relative phase of colliding solitons. In @MPplitude and velocity as

Sec. lll we study numerically the influence of perturbations 1 20

of two different types and confirm the predicted effects. Sec- o] :E(ajz-Fij), Tj=—, \j =T]-|Vj|. (12

tion IV concludes the paper. @]

A. Collision point

Il. TWO-SOLITON SOLUTION TO UNPERTURBED NLSE . .
Well before the collision in unperturbed system tth

The exact coherent two-soliton solution to the unper-soliton moves on §,7) plane along one of the lines— 7,
turbed NLSE can be found analyticall§8], and we present +A/a;=V;(£—¢;) and well after the collision along the
this solution in the following form: other line. It is clear from the equations of the lines that the
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solitons experience the coordinate shif2A/a; due to the
collision. The coordinates of the collision point are

el —di— Asgr(d,—d;) 222
fc—vl_v2 2— 0y sgn(d,—d;) aa, |’

A .
Tc:Sgr(d:;_j_dj);"r‘ngc"r‘dj, j=1 or 2. (13)
j
The sign of¢, indicates that the system &&0 is either
before (+) or after (—) or at the instant (0) of the collision.
Let us analyze the solutiofi) at the collision pointé
=&, 7=1.. We haveg,(&.,7)=0 and

¥i(&c, 7o) = 0 +sgnids—;—d;)

AV,
]
(14

It is not difficult to demonstrate that for givey), V;, and

d; the squared absolute value of the solutjgifé, 7)|? is a
periodic function of the relative phase of the solitohy
=11~ 7v,. At the collision point, it reaches its maximum
possible value (&, ,7.)|>=(a;+a,)? when
Aye=vy1(éc,7c) — vaéc 7o) =2mm, (15

or, in terms of initial phases,

Ap=p1— pp=2mm—{ (w1~ wp) +sgn(d; —dy)

for an integem.
For a particular case of symmetric collisicam,=a, and
V,=-V,, Eq.(16) reduces to
Ad=27m. a7
The condition of collision with maximum amplitude in
the form of either Eq(15) or Eq. (16) is important in the
following discussion because the role of perturbation ter

increases with increase in amplitude. Note that the maximu

possible amplitude, &; +a,)?, is proportional to squared
norm of two-soliton solutioisee Eq.(6)].

B. Comparison of two solutions with the same normN,
momentum P, and energyE

PHYSICAL REVIEW E 66, 046609 (2002
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FIG. 1. IntegralsR(Avy.) andI(Avy.) [Egs.(18) and (19)] for
two solutions (&, 7) and ¥(&,7) having the sameN, P, and E
(a;=a,=1, V;=—V,=0.01 anda,;=1.1, a,=0.9, V,~0.0909,
V,~—0.1111).R and| drop by several orders of magnitude in a
narrow vicinity of Ay.=0.

Eq. (6) so thaty andy have the samé&\, P, andE. Initial

positions of solitoniij are found with the use of E@13) in
a way that the coordinates of collision points for both solu-

tions coincide, i.e.g.=&; and 7,=.. Initial phasess; are
determined from two conditionﬁj(gc,rc)z ¥j(€e . 7e)-

We want to compare the solutiogsand at the moment
of collision ¢= ¢, for various magnitudes of relative phase
Avy.. Note that, in our case\ vy, is defined by the choice of
A¢,. As a measure of difference betweer(é.,7) and

W(&.,7) we use the following integrals:

R= | (R4U(&. M-REUE. DA (8
and

1= f:{lmw(fc,r)]—lm[?f@c,r)]}zdr. (19

In Fig. 1, we plotR(Avy.) andI(Ay,.) for two solutions

mith the sameN, P, andE. As it is expected from Eql5),
ntpe dependences arereriodic.

It is remarkable that botR and| drop by several orders
of magnitude in a narrow vicinity oA y,=0. Figure 2 gives
an insight of how close are the solutiongé.,7) (solid
circles and (¢, 7) (open circles at Ay.=0. The curves,
representing real parts of the solutions, are almost indistin-
guishable in the scale of the figure. The imaginary parté

The aim of this section is to demonstrate that differentshown in Fig. 2 are similarly close. The results, presented in

two-soliton solutions with the sané, P, andE can be very
close to each other d@t= &, if the solitons’ phases are prop-

erly chosen. This means that even a small perturbation would"
be enough for such solution to be transformed into another.™
Let us consider two different two-soliton solutions of the

type (7), ¢(&,7) and¥(&,7). For the solutiony, we fix all
soliton parametersy;, V;, dj, and¢,, excepte,, which is
considered as a free parameter.

For the solutiony we set magnitude for one of four pa-

rametersa; , V;,

Figs. 1 and 2, were obtained for a typical set of parameters
g1=a,=1, V1=-V,=001, anda;=1.1, a,=0.9, V,
0.0909,V,~—0.1111.

We come to the conclusion that a pair of solitons colliding

with relative phase\ y., nearly satisfying Eq(15), can be

easily transformed by a weak perturbation into another pair

with nearly same\, P, andE. The set of such pairs is infinite

and, therefore, chaotic nature should be proper to mutual

transformations of these pairs in a weakly perturbed system,
and find the other three parameters fromwhen internal soliton modes are excluded from the consider-
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FIG. 2. Profiles of real parts of solutiong &.,7) (solid circles
andT/;(gc,r) (open circleg at Ay.=0. Imaginary parts are simi-
larly close. The soliton parameters are same as in Fig. 1. 0

200 10 -10 0 10 -10 0 10
ation. Since the conservation laws are almost fulfilled, the T T T
transformation can happen without significant radiation. Par- |G, 3. Examples of soliton collisions fof@) Ay.=, (b)

ticular type of perturbation is not important because theay.=0, and(c) Ay.=—0.08. The collision in(@) is practically
above conclusions were made from the analysis of solutionglastic, and collisions irfb) and (c) are strongly inelastic. Top im-

to unperturbed NLSE. ages are the density plots for Re¢>0.3. Bottom images are the
pseudo-three-dimensional plots fpy?|. Perturbation parameters
Il. NUMERICAL RESULTS are A7=0.025, e=—-0.02, and the solitons’ parameters are

aj:]., Vj=i0.05, andjj:IS.
To integrate Eq.(1) numerically we use the implicit

Crank-Nicolson method with the accura€(A¢&?). Since
we study the discreteness ) the influence of discreteness
in ¢ should be minimized. This can be achieved by settin
Aé=0.17A 72, wherewA7? is the shortest period of oscil-
lations for the linearized discrete NLSE. The analytic two- Iy ; . .

tween collisions of symmetric and asymmetric solitons.

soliton solution to unperturbed NLSE, E(), is taken as Therefore, we restrict ourselves to the case of symmetric

g}lct);?égondmons. The reflecting boundary conditions are €M-collision when the condition of inelastic collision in the form

For perturbation parameters we assign values from th f Eq. (17) with the parameten 4 can be used. Neverthe-

domainsec [ —0.02,0.02 and A re[0.025,0.3. Both of ess, we prefer to use more general conditi@f) with the
them correspond to' Weak perturbatio.n R parameterA y. to present results in the form applicable to

We integrate Eq(1) until solitons go far apart after colli- both symmetric and asymmetric cases.

sion so that they can be treated as independent quasiparticles. For eaph pair of solitons with certaiy and V; we fix
To study inelasticity of collision, with the use of Egs. nitial positionsd, to makeAy; be the only governing pa-

(3)—(5) we calculate the normi! , momentaP! , and ener- 'aMeter. To vanAy, we put ¢,=0 and vary onlyg,. As
. , . . ) ... well as solution(7) is 27 periodic with respect td y,, it is
gies E; of solitons after collision and compare them with e

. o sufficient to consideA y. e[ — m, ).
N;, P;, andE; before the collision. Integration is made over In Fig. 3 we show the pictures of soliton collision i, )

the intervals of localization of each soliton. These intervals | for(@ Aye=, (b) Ay,=0, and(c) Ay,=—0.08
are centezred at the soliton positions, found as the point he top figurescare ’density Cplots, for nge(>o§ anoi th.e
e el e otom fures showy The colison i s practcaly
- e | elastic; in(b) and (c) the collisions are strongly inelastic.
ticity of t.h‘? coI_I|S|on. . . . . Figure 3 illustrates the fact that the antiphase solifimsa)]

A 99”'3'.0n IS .el.aSt'C when relayve.change in physical interact as mutually repulsive particles while the in-phase
quantities is negligible for each soliton: solitons[in (b) and (c)] interact as mutually attractive par-
ticles. Significant exchange in all three conserved quantities
takes place in(c), while in (b) the change in amplitudes
L - . . (normg of solitons is small. As Eq(13) predicts, the coor-
We call a collision inelastic if soliton parameters change Si9inates of the collision pointd, . 7,) do not depend on
nificantly due to collision. : S pe e . = Ye-

For soliton parameters in Fig. 3 we set=1, V= +0.05,

. . dj=+8, and perturbation parameters ake=0.025, and
A. The role of phase difference. Chaotic nature e=—0.02.

of soliton collisions In Fig. 4 we plot velocities of the solitong] (A y.) after

In Sec. Il, the possibility of radiationless transformation collision. We show only the vicinity ofA y.=0, where, in
of one solution into another was predicted in a narrow rangdine with Eq. (15), inelasticity of the collision drastically

of solitons’ relative phasa y.. This may happen whefiy,
early satisfies conditiofl5). Here we verify this prediction
umerically and find out other remarkable facts.
Numerical results reveal only quantitative difference be-

|AX;|=IX] = X;|<|X;l,  X;=N;,P;E;.V,. (20
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0 T 7 T " ¥ | soliton bound state. The greater is the number of collisions
- -_N before the escape, the longer is the lifetime of the bound
~ O0F 1.1 s state. Every smooth part of functic)r']’(A ve) In Fig. 4 cor-

_0‘17‘-\7\4//"’"—*4_' responds to a specific number of collisions befo_re solitc_)ns

03 02 01 0 01 02 03 escape each other. These numbers are marked in the figure
QIF T T T for visible smooth parts in all blowups.
b ! : -,'(b)— One can notice from Fig. 4 that there is the inverse sym-
Ny 0-T—§:=3:(}<3_)Z<: 2 : metry of the curves with respect to the origin, and the inver-
R 2y Yovea sion is opposite in odd and even blowups.
i T 3*“- ©... P The fractal structure of Fig. 4 proves the chaotic nature of
01F— '.' " R ETC. - o the soliton _scattering. If the relative solit_on phaSef_C _is a
-t L:)fj*\? Y ’1'\:; ©)] random varlable, then _the result of a p_artlcular collision can-
R 03—3{;{.4:,‘ 3 §:>0\‘24 {;—7 not be predicted and it can be described only probabilisti-
A A W O cally. Sensitivity of the result of collision to relative phase

- T R 6.0'060601' —d A_}_/C becomes extremely large whany. nearly satisfies con-

I T T T dition (15).

o a\c’//'\/\r}\Jd) The lifetime of two-soliton bound states is discussed in
N P b detail in Ref.[17].
3 S 4‘\f\/ ,3 3. Here we would like to clarify the difference in nature of

01, P E——rers chaotic scattering in our case from the reported, e.g., in Refs.

[11,12,14. In any case the fractal scattering can be observed
in the presence of only attractive perturbation, when two
utually attracted solitons can escape each other only if they
of solitons after collisiorV; as functions of relative phagey, . In ave syfﬂmerﬂ!y large re!gtlve VeIOC',ty' It has been reported
(b)—(d) the subsequent blowups of the region neay.=0 are that, with a f|n_|te probability, two sollton_s do r_10t overcome
shown. Figures inside the smooth parts of the curves denote tH&Utual attraction even when they collide with a velocity
number of collisions before solitons escape from each other. Solitofr€ater than a threshold value because a part of their kinetic
parameters are;=1, V;==0.01, andd;= 5. Perturbation pa- €nergy can be transfer(ed into a soliton internal mode
rameters ard\r=0.2 ande=0. [11,12,14. Energy of the internal modes can be transferred
back into soliton kinetic energy during the secdjod third

increases. One can see from Figs. 3 afal that inelasticity etc) collision and the two-soliton oscillatory system breaks
of the collision is very sensitive to the relative phase of soli-UP- The number of collisions before the breakup and the
tons only in a narrow vicinity oA y.=0: in the rest of the t_)rgakup velocity are very sensitive to the parameters of col-
domain[ — m, ) the collision is practically elastic, as it is lision and thus the results of collisions have a fractal struc-
usually expected in weakly perturbed systems. ture [11,12,14 as a function of collision parameters. This,
The curves in Fig. @) demonstrate chaotic behavior as however, occurs only if the perturbation is sufficiently large.
|Ay.| becomes of the order of 1. The blowup of this Otherwise the soliton internal modes cannot be excited. On
region, presented i), reveals the existence of intervals the other hand, too big perturbation kills the effect because
with apparently chaotic behavior N{(A%) alternating of the fast radiation decay of the two-soliton oscillatory sys-

. . . : em.
with the intervals of smooth behavior. Functmq(Ayc) . .
manifests the property of self-similarity, illustrated by the In the present paper, the perturbation parameter is too

subsequent blowups in Figs(s—4(d). This self-similar pat- sma_lll for sol|t_on mternal_modes to be excited. Instead of
. . . excitation of internal soliton modes we demonstrated the
tern is related to the fractal soliton scattering.

The origin of fractal structure of functio’ (A y.) has possibility of radiationless energy transfer directly between
] C.

: . . kinetic and internal energy of the solitoriterchange in
been explained in Ref15] for SGE and in Refd.16,17] for ; , : " .
NLSE. In the NLSE perturbed by the discreteness or b solitons’ amplitudes and velocitiesThis energy exchange

intic ith e<0 lit tract h oth ith ﬁogether with mutual attraction between solitons give the
quintic term with e=<0, solitons attract €ach other With & 405 scattering picture similar to that observed by other

weak f(;rce.t'l'ht;s t’f_ype of dat_ttra_lctldo_r;r app?aflrs Ontlﬁ]/ In tt?e pt_reséuthors[ll,lz,lé]. The physically important difference is
ence o perturbation and 1t 1s difierent from the attracliony, o iy oyr case the radiation losses are very small and life-

between in-phase solitons, which exists also in the unpetgq ot the oscillatory system can be very long. We observed

turbed system. The attractlor), induced .by perturbation, i reaking up of the oscillatory system into independent soli-
responsible for the fractal soliton scattering. As a result o ons after many hundreds of collisions, when the relative
inelastic collision, solitons can gain a small relative velocity '

such that they cannot overcome mutual attraction. In thié) haseA y; was properly adjusted.
situation the solitons collide for the second time. In the sec-
ond collision the solitons can acquire an amount of kinetic
energy sufficient to escape each other. However, there exists
a finite probability to gain the kinetic energy below the es- In order to study the influence of discreteness only, we put
cape limit. While solitons keep colliding, they form a two- e=0. For a fixedA r we calculateNj’(A ) Pj’(A ve), and

0
Ay,

FIG. 4. Fractal scattering of two solitons, presented by velocitie

B. The role of discretenessA 7, quintic term e,
and collision velocity V
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FIG 5. Maxim_um possible changes Nf, P;, andE; due to FIG. 6. Maximum possible changes N, P;, andE, due to
CO”'S_'(m as functions ofAr at =0, aj=1, V;==+0.05, and . ision as functions of at Ar=0.025, a;=1, V;==*0.05, and

Ej(Ay.) after collision for Ay.e[—m,7) and compare
them with the corresponding quantities before the collision
The results prove the suggestion that inelasticity of collisio
increases in the vicinity oA y.=0. In Fig. 5, the maximum
values ofAN;, AP;, andAE; due to collision are shown as
functions of Ar. One can see that weak discreteness indee&a_S

causes relatively strong inelasticity of collision. As an ex-_T\Ii\'N let us consider influence of collision velocity and
ample, forAr=0.1, the maximum changes M, P;, and y

E, 1€ 2.9%, 11.8%, and 8.2%, respecivel. agLde o perlbalon parametr o e ackl scaterng
We do not plot changes iN, P, and E for the second P : 9. P Y

soliton because they are practically the same as those for tg?e first SOI't.Or.]’Vl’ as fgnctlon of Q) for AT.: 0.3 and
first one taken with the opposite sign. The difference is in th ifferent collision v_elocmesvj taken from _the mterva_vl
th|rd d|g|t W|th|n the WhOle domain OA ‘}/CE[_ 7_[_’77). ThIS = _V2€ [Ol,l:u W|th the Step 01 The W|dth Of the inter-
fact suggests that the radiation is very small. The soliton
parameters in Fig. 5 are equal td;==0.05, a;=1,

dJ =+ 5 .

In Fig. 6 we study the influence of the quintic term on
maximum possible changes My, P, andE;. To minimize
the influence of the discreteness, we &et=0.025, which
causegsee Fig. 5 fore=0) the maximum changes iN;,

P;, andE; such as 0.17%, 0.05%, and 0.5%, respectively.
The soliton parameters are the same as in Fig. 5. For the
quintic perturbation, inelasticity of the collisions is strong as
well. Fore= +0.02, the norn; (or amplitude of a soliton,

its momentunP; , and energy; change due to collision by
more than 10%, 100%, and 30%, respectively.

We emphasize again that such enormous sensitivity of the
effect to A7 and e takes place only in a narrow interval of
the soliton relative phase around the palng.=0. Outside
of this interval in the domaih— 7, 7), the influence of per-
turbations is several orders of magnitude weaker. v

Another important parameter is the collision velocity that
is V;—V,=2V in the case of symmetric collision. The de-  FIG. 7. Maximum possible changes Nf , P;, andE; due to
pendences, depicted in Fig. 7, manifest rapid increase in ircollision as functions ol/=V;=—V, for e= —0.02, A7=0.025,
elasticity of collision with decrease in collision velocity  a;=1, andd;=+5. The inelasticity of collision is very strong for
The inelasticity of collision is very strong fof<1 and itis V<1 and it is weak fovV~1.

weak forV~1. It is clear from the form of solutio(7) and

it was also verified numerically that inelasticity of collision
"becomes stronger in the caBé,—V,|—0, which is more
general than the casg— 0, studied numerically. Figure 7
obtained fore=—0.02, A7=0.025, a;=1, and d;

0

max(AN,)
&

max(AP;)

0.1

max(A E)
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. ) ) . FIG. 9. Changes ifa) N4, (b) P4, and(c) E; due to collision as
FIG. 8. Characteristic changes in chaotic scattering pattern duﬁmctions of relative phase of solitonsy, for different sets of

to v.ar.iation of(a) collision velocity and(b) perturbation parameter. perturbation parameters=0.0105, A 7=0.025 (open circlel A7
Varlathn ranges ar¥y/;= fvze[o.l,l._l] with the step 0.1 forA 7 =0.2, e=0 (solid circles, andA r=0.2, e=0.0105(squares Pa-
=0.3 in (& and A7¢[0.01,0.33 with the step 0.05 forVy  aneters of the solitons ag=1, V;==0.01, andd;=¥5.
=—V,=0.3 in (b). For both(a) and (b) we takea;=1 ande=0. ! !
The width of the interval of inelastic collisions increases with in-
crease in the collision velocity. The inelasticity of the collisions ) )
becomes stronger as the magnitude of perturbation parameter in- In Fig. 9 we plot ch_apges i, P, andE for one of fche
creases. The chaotic behavior cannot be observed foh agyf the sol!tons due t.O the collision with another .one as functions of
solitons’ collision velocity is bigger than some limit, determined by solitons’ relative phasa y.. Three curves in each part of the
the strength of the perturbation. figure correspond to different sets of perturbation parameters,
| of (A h lisi inelastic. i while soliton parameters are the sansg=1, V;=*+0.01,
val of (Ayc), where collisions are inelastic, increases ONandd;=+5). Open circles show the case of0.0105 and
increase in collision velocity. The radiation grows as wellAT:0 025. It has been mentioned in Sec. |1l B that for this
however remains small. In Fig(t8, the functionVi(Ayc) IS y41ye of A~ the discreteness effect can be neglected and the
plotted forV,=—V,=0.3 and different discreteness param- yominant role is played by the quintic perturbation term. On
eter A7e[0.01,0.33 with the step 0.05. Inelasticity of the the gther hand, solid circles show the influence of discrete-
collisions becomes stronger as magnitude of perturbation pgjegs-A 7=0.2 ande=0. Finally, solid squares show the si-
rameter increases. , , . multaneous action of both perturbationd7=0.2 and e

It is interesting that the chaotic behavior of function — g 91008. One can see from Fig. 9 that the discreteness and
Vi(Ayc) can be observed in Fig.(@ only for sufficiently  he quintic term withe>0 make the effects of the opposite
small collision velocities and in Fig.(B) only for suffi-  gjgn,
perturbation of a certain magnitude, the solitons can collidghosenA 70 and e#0, these two perturbations compen-
only once for anyAy if their collision velocity is bigger  sate each other, and collisions become practically elastic for

C. Compensation effect

than some limit. . . any relative phase parametary. (see the curve, marked
On the other hand, near the poifty;=0, for solitons  \yith squares in Fig. 9
with small collision velocity, e.gy~ 103, the nonradiating This remarkable property can be important in applications

collisions with significantrelative exchange in physical where the strong inelasticity of soliton collisions is an un-
quantities take place even for the discreteness parameter wanted consequence of an inevitable perturbation in the sys-
of the order of 102. Therefore, the mentioned above calcu-tem. Effect of such a pertubation can be suppressed by per-
lation accuracy, for which the discreteness can be neglectetlrbation of another type if the latter can be introduced and
should be estimated separately for different collision velocicontrolled artificially.
ties V. Another merit of the compensation effect is the possibility
One more remark is obvious from Fig. 4. Although theto establish correspondence between different kinds of per-
results of collision are extremely sensitive to the relativeturbation. In Fig. 10 we show the relation betwekn and e
phase of the solitons, the height of the peaks of functionsvhen the influence of two perturbation terms in the right-
V{(Avyc) remains the same in each blowup. This means thahand side of Eq(2) compensate each other and soliton col-
maximum intensity of the effect is determined only by thelisions in the presence of both perturbations become almost
strength of the perturbatidrrig. 8b)]. elastic. Practically same result was obtained for symmetric
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0.02 Val tively large exchange in norm, momentum, and energy oc-
curs with practically no radiation so that conservation laws
(3)—(5) are fulfilled with a high accuracy for the two-soliton

W system.
| Since the effect was predicted in Sec. Il from the analysis
0.01 - of the unperturbed NLSE, one can deduce that actual type of
/ perturbation is not really important. Moreover, in Sec. 11 C,
/-/ we established a relation between two different perturbation

terms in the sense that they cause the s&n®, and E

exchange during inelastic collision. It is likely that the total

0 0.001 0.002 0.003 effect of several weak perturbations can be presented as a
AT 2/24 superposition of the contributions from each sort of pertur-

_ _ bation. In particular, the effects of two different perturbations

FIG. 10. Relation betweef 7 and e when the influence of two can compensate each other. The compensation mechanism

perturbation terms of the right-hand side of @) compensate may be used in applications to suppress an inevitable pertur-

each other and soliton collisions in the presence of both perturbeB : . : .
. : . ation by introducing a controlled perturbation of another
tions become almost elastic. Practically the same result was oh-

tained for symmetricg;=1, V;=*0.05, d;=+5) and asymmet- ype in the system. .
fic (a;=1.1, 2,=0.9, V,=0.05, V,= 0.1, d;=55) soliton Our results can significantly change the understanding of
-4 -y Iy B |

pairs. soliton gas model. In the presence of even weak perturbation,
the collisions of solitons can be inelastic. This is especially
important in the case when solitons have small relative ve-
locities because, in this case, the probability of inelastic col-
lision increasegsee Sec. Il B.

The fractal scattering pattern proves the chaotic character
of soliton collisions in weakly perturbed NLSE.

(aj=1, V;==0.05, dj==5) and asymmetric g;=1.1,
a,=0.9, V;=0.05, V,=—-0.1, d;=+5) soliton pairs. The
dependencye(A 72/24) can be approximated by a straight
line with the slope about 6.1 for each pair of solitons. With
Fig. 10 in mind one can say that it is enough to study influ-
ence of only one weak perturbation and then the effect of

perturbation of another kind can be predicted. ACKNOWLEDGMENTS
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