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Chaotic character of two-soliton collisions in the weakly perturbed nonlinear Schro¨dinger equation
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We analyze the exact two-soliton solution to the unperturbed nonlinear Schro¨dinger equation and predict that
in a weaklyperturbed system~i! soliton collisions can bestronglyinelastic,~ii ! inelastic collisions are of almost
nonradiating type,~iii ! results of a collision are extremely sensitive to the relative phase of solitons, and~iv! the
effect is independent on the particular type of perturbation. In the numerical study we consider two different
types of perturbation and confirm the predictions. We also show that this effect is a reason for chaotic soliton
scattering. For applications, where the inelasticity of collision, induced by a weak perturbation, is undesirable,
we propose a method of compensating it by perturbation of another type.
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I. INTRODUCTION

Influence of perturbations of various types on interact
of solitons in different integrable nonlinear equations h
been studied thoroughly during last decades@1,2#. Different
effects such as inelasticity of soliton collisions, mutual tra
ping, collapse of solitons etc. have been reported as com
sequences of violated integrability@1–11#. It has been also
reported that perturbation can be responsible for chaotic s
ton scattering@11–17#. In the vast majority of studies, th
inelastic soliton collisions and other effects of perturbat
are related to the existence of solitons’ internal modes~see,
e.g., Ref.@10#!. The internal modes can play an importa
role only if the perturbation parameter is not too small. A
consequence, the reported effects are usually accompa
by significant radiation of energy and the case of a we
perturbation is usually considered as the case of a small
portance. However, a nontrivial effect of perturbation tha
almost radiationless energy exchange between colliding s
tons has been reported for weakly discrete sine-Gordon e
tion ~SGE! @9,15# and nonlinear Schro¨dinger equation
~NLSE! with small quintic perturbation@8#. In both cases,
the effect was observed inthree-soliton collisions. Recently
the strongly inelastic radiationless collision oftwo solitons
was observed numerically in NLSE for weak discreten
@16,18#. We suppose that strongly inelastic collision is po
sible when the number of soliton components is greater t
the number of quantities, conserved~with a high accuracy!
for the perturbed equation. In SGE, the inelastic collision c
be observed when at least three one-component solitons
at one point, because there are two conserved quatities,
mentum and energy@9,15#. NLSE soliton is a two-
component one and there are three conserved quant
norm, momentum, and energy. Thus, the conservation l
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do not forbid a strongly inelastic collision between tw
NLSE solitons @16#. This is physically important becaus
two-soliton collisions in NLSE are more probable compar
to three-soliton collisions. The same concerns SGE, wh
three- and four-soliton collisions are easily observed in kin
breather and breather-breather collisions@9,15#.

The aim of this paper is to show that in perturbed NLS
even two-soliton collisions can be strongly inelastic with
negligible amount of radiation and that the effect is ess
tially determined by the internal parameters of solitons
not by the particular type of perturbation. We also show t
this effect is a reason for chaotic soliton scattering.

The perturbation parameter is taken to be extremely w
so that internal and radiative modes cannot play any sign
cant role. Therefore, the traditional mechanisms of inela
scattering~Refs.@8,11,12,14#! should be excluded from con
sideration.

On this purpose we integrate numerically the set of d
crete NLSE with small discreteness parameterDt and small
quintic term (e!1):

i
dcn

dj
1

1

2Dt2
~cn2122cn1cn11!1ucnu2cn5eucnu4cn .

~1!

Besides numerous applications of the discrete NLSE
different fields of physics, e.g., nonlinear optics, dynamics
biomolecules, self-trapping phenomena etc., it is also use
analyze different types of localized modes in the discr
version of SGE@2#.

Assuming thatDt is small, one can transform Eq.~1! into
following continuum perturbed NLSE

icj1
1

2
ctt1ucu2c5eucu4c2

Dt2

24
ctttt . ~2!

The first term in the right-hand side of Eq.~2! is the
quintic perturbation, important in nonlinear optics@1,3,8#.
The second term is the leading term accounting for the
creteness of Eq.~1!.
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In the absence of perturbation (e50,Dt→0), NLSE is
known to be exactly integrable, and it supports propaga
of envelope solitons, which recover their properties after c
lision with each other, i.e., collide elastically. The integrab
unperturbed NLSE has an infinite number of conservat
laws. The conservation laws, important for analysis of s
ton collisions, are the conservation of norm

N5E
2`

`

ucu2dt, ~3!

momentum

P5 i E
2`

`

~ct* c2ctc* !dt, ~4!

and energy

E5
1

2E2`

`

~ uctu22ucu4!dt. ~5!

For the system of two solitons having amplitudesa1 , a2
and velocitiesV1 , V2, the above conservation laws take t
form

N52(
j 51

2

aj , P54(
j 51

2

ajVj ,

E5(
j 51

2 S ajVj
22

1

3
aj

3D . ~6!

A weak perturbation reduces a completely integrable s
tem to a nearly integrable one, and conservation laws~3!–~5!
are, generally speaking, fulfilled only approximately. Ho
ever we can claim that astrongexchange in norm, momen
tum, and energy between two colliding solitons is, in pr
ciple, possible in aweakly perturbed system because t
exchange is not forbidden by the conservation laws that
tablish only three relations between four soliton paramet
In the following, we demonstrate numerically that such e
change does really happen, and it becomes very strong
specific range of solitons’ parameters even in the case
weak perturbation.

The paper is organized as follows. In Sec. II, the ex
two-soliton solution to unperturbed NLSE is analyzed, a
the possibility of strong inelasticity of collision is predicte
in a certain interval of relative phase of colliding solitons.
Sec. III we study numerically the influence of perturbatio
of two different types and confirm the predicted effects. S
tion IV concludes the paper.

II. TWO-SOLITON SOLUTION TO UNPERTURBED NLSE

The exact coherent two-soliton solution to the unp
turbed NLSE can be found analytically@18#, and we presen
this solution in the following form:
04660
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c~j,t!5
1

D H a1eig1

chb1
@a1

22a2
21~V12V2!212ia2thb2

3~V12V2!#1
a2eig2

chb2
@a2

22a1
21~V22V1!2

12ia1thb1~V22V1!#J , ~7!

where

D5~a12a2!21~V12V2!2

12a1a2S ch@b12b2#2cos@g12g2#

chb1chb2
D , ~8!

b j5aj@t2t j2Vj~j2j j !#,

g j5Vj~t2t j !1~aj
22Vj

2!~j2j j !/2,

andj j ,t j are the effective coordinate shifts (j 51,2). Here-
after in the paper, we use indexj 51,2 when refer to both
solitons. If atj50 the solitons are at positionsd1 and d2
with initial phasesf1 andf2, then their effective coordinate
shifts are found as

j j522
sgn~d32 j2dj !~AVj /aj1F j !1f j

aj
21Vj

2
,

t j5sgn~d32 j2dj !
A

aj
1Vjj j1dj , ~9!

where

A5
1

2
lnF ~a11a2!21~V12V2!2

~a12a2!21~V12V2!2G , ~10!

F j5arg@aj
22a32 j

2 1~V12V2!21 i2a32 j~Vj2V32 j !#,
~11!

sgn(x)521,0,1 forx,0, x50, andx.0, respectively, and
function arg is supposed to give values in the inter
@0,2p).

Thus a particular two-soliton solution is uniquely defin
by eight parameters: soliton amplitudesaj , velocities Vj ,
initial positionsdj , and initial phasesf j . In our calculations
we takeaj.0 because the change of the sign of solito
amplitude is equivalent to initial phase shift by6p.

The angular frequencyv, period of oscillationT, and
wavelengthl of a soliton can be expressed in terms of
amplitude and velocity as

v j5
1

2
~aj

21Vj
2!, Tj5

2p

v j
, l j5Tj uVj u. ~12!

A. Collision point

Well before the collision in unperturbed system thej th
soliton moves on (j,t) plane along one of the linest2tc
6A/aj5Vj (j2jc) and well after the collision along the
other line. It is clear from the equations of the lines that t
9-2
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solitons experience the coordinate shift62A/aj due to the
collision. The coordinates of the collision point are

jc5
1

V12V2
Fd22d12A sgn~d22d1!

a11a2

a1a2
G ,

tc5sgn~d32 j2dj !
A

aj
1Vjjc1dj , j 51 or 2. ~13!

The sign ofjc indicates that the system atj50 is either
before (1) or after (2) or at the instant (0) of the collision

Let us analyze the solution~7! at the collision pointj
5jc , t5tc . We haveb j (jc ,tc)50 and

g j~jc ,tc!5v jjc1sgn~d32 j2dj !S AVj

aj
1F j D1f j .

~14!

It is not difficult to demonstrate that for givenaj , Vj , and
dj the squared absolute value of the solutionuc(j,t)u2 is a
periodic function of the relative phase of the solitonsDg
5g12g2. At the collision point, it reaches its maximum
possible valueuc(jc ,tc)u25(a11a2)2 when

Dgc5g1~jc ,tc!2g2~jc ,tc!52pm, ~15!

or, in terms of initial phases,

Df5f12f252pm2jc~v12v2!1sgn~d12d2!

3(
j 51

2 S AVj

aj
1F j D , ~16!

for an integerm.
For a particular case of symmetric collision,a15a2 and

V152V2, Eq. ~16! reduces to

Df52pm. ~17!

The condition of collision with maximum amplitude i
the form of either Eq.~15! or Eq. ~16! is important in the
following discussion because the role of perturbation ter
increases with increase in amplitude. Note that the maxim
possible amplitude, (a11a2)2, is proportional to squared
norm of two-soliton solution@see Eq.~6!#.

B. Comparison of two solutions with the same normN,
momentum P, and energyE

The aim of this section is to demonstrate that differe
two-soliton solutions with the sameN, P, andE can be very
close to each other atj5jc if the solitons’ phases are prop
erly chosen. This means that even a small perturbation wo
be enough for such solution to be transformed into anoth

Let us consider two different two-soliton solutions of th
type ~7!, c(j,t) and c̃(j,t). For the solutionc, we fix all
soliton parameters,aj , Vj , dj , andf2, exceptf1, which is
considered as a free parameter.

For the solutionc̃ we set magnitude for one of four pa
rametersã j , Ṽj , and find the other three parameters fro
04660
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Eq. ~6! so thatc and c̃ have the sameN, P, andE. Initial

positions of solitonsd̃ j are found with the use of Eq.~13! in
a way that the coordinates of collision points for both so
tions coincide, i.e.,jc5 j̃c andtc5 t̃c . Initial phasesf̃ j are
determined from two conditionsg̃ j (jc ,tc)5g j (jc ,tc).

We want to compare the solutionsc andc̃ at the moment
of collision j5jc for various magnitudes of relative phas
Dgc . Note that, in our case,Dgc is defined by the choice o
Df1. As a measure of difference betweenc(jc ,t) and
c̃(jc ,t) we use the following integrals:

R5E
2`

`

$Re@c~jc ,t!#2Re@c̃~jc ,t!#%2dt ~18!

and

I 5E
2`

`

$Im@c~jc ,t!#2Im@c̃~jc ,t!#%2dt. ~19!

In Fig. 1, we plotR(Dgc) and I (Dgc) for two solutions
with the sameN, P, andE. As it is expected from Eq.~15!,
the dependences are 2p-periodic.

It is remarkable that bothR and I drop by several orders
of magnitude in a narrow vicinity ofDgc50. Figure 2 gives
an insight of how close are the solutionsc(jc ,t) ~solid
circles! and c̃(jc ,t) ~open circles! at Dgc50. The curves,
representing real parts of the solutions, are almost indis
guishable in the scale of the figure. The imaginary parts~not
shown in Fig. 2! are similarly close. The results, presented
Figs. 1 and 2, were obtained for a typical set of parame
a15a251, V152V250.01, and ã151.1, ã250.9, Ṽ1

'0.0909,Ṽ2'20.1111.
We come to the conclusion that a pair of solitons collidi

with relative phaseDgc , nearly satisfying Eq.~15!, can be
easily transformed by a weak perturbation into another p
with nearly sameN, P, andE. The set of such pairs is infinite
and, therefore, chaotic nature should be proper to mu
transformations of these pairs in a weakly perturbed syst
when internal soliton modes are excluded from the consid

FIG. 1. IntegralsR(Dgc) and I (Dgc) @Eqs. ~18! and ~19!# for

two solutionsc(j,t) and c̃(j,t) having the sameN, P, and E

(a15a251, V152V250.01 andã151.1, ã250.9, Ṽ1'0.0909,

Ṽ2'20.1111).R and I drop by several orders of magnitude in
narrow vicinity of Dgc50.
9-3
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ation. Since the conservation laws are almost fulfilled,
transformation can happen without significant radiation. P
ticular type of perturbation is not important because
above conclusions were made from the analysis of solut
to unperturbed NLSE.

III. NUMERICAL RESULTS

To integrate Eq.~1! numerically we use the implici
Crank-Nicolson method with the accuracyO(Dj2). Since
we study the discreteness int, the influence of discretenes
in j should be minimized. This can be achieved by sett
Dj50.1pDt2, wherepDt2 is the shortest period of oscil
lations for the linearized discrete NLSE. The analytic tw
soliton solution to unperturbed NLSE, Eq.~7!, is taken as
initial conditions. The reflecting boundary conditions are e
ployed.

For perturbation parameters we assign values from
domainseP@20.02,0.02# and DtP@0.025,0.35#. Both of
them correspond to weak perturbation.

We integrate Eq.~1! until solitons go far apart after colli
sion so that they can be treated as independent quasipart

To study inelasticity of collision, with the use of Eq
~3!–~5! we calculate the normsNj8 , momentaPj8 , and ener-
gies Ej8 of solitons after collision and compare them wi
Nj , Pj , andEj before the collision. Integration is made ov
the intervals of localization of each soliton. These interv
are centered at the soliton positions, found as the po
whereucu2 has maxima. Sometimes, it is convenient to u
the change in solitons’ velocitiesVj as a measure of inelas
ticity of the collision.

A collision is elastic when relative change in physic
quantities is negligible for each soliton:

uDXj u5uXj82Xj u!uXj u, Xj5Nj ,Pj ,Ej ,Vj . ~20!

We call a collision inelastic if soliton parameters change s
nificantly due to collision.

A. The role of phase difference. Chaotic nature
of soliton collisions

In Sec. II, the possibility of radiationless transformati
of one solution into another was predicted in a narrow ra

FIG. 2. Profiles of real parts of solutionsc(jc ,t) ~solid circles!

and c̃(jc ,t) ~open circles! at Dgc50. Imaginary parts are simi
larly close. The soliton parameters are same as in Fig. 1.
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of solitons’ relative phaseDgc . This may happen whenDgc

nearly satisfies condition~15!. Here we verify this prediction
numerically and find out other remarkable facts.

Numerical results reveal only quantitative difference b
tween collisions of symmetric and asymmetric soliton
Therefore, we restrict ourselves to the case of symme
collision when the condition of inelastic collision in the form
of Eq. ~17! with the parameterDf can be used. Neverthe
less, we prefer to use more general condition~15! with the
parameterDgc to present results in the form applicable
both symmetric and asymmetric cases.

For each pair of solitons with certainaj and Vj we fix
initial positionsdj to makeDgc be the only governing pa
rameter. To varyDgc we put f250 and vary onlyf1. As
well as solution~7! is 2p periodic with respect toDgc , it is
sufficient to considerDgcP@2p,p).

In Fig. 3 we show the pictures of soliton collision in (j,t)
plane for ~a! Dgc5p, ~b! Dgc50, and ~c! Dgc520.08.
The top figures are density plots for Re(c).0.3, and the
bottom figures showucu2. The collision in~a! is practically
elastic; in ~b! and ~c! the collisions are strongly inelastic
Figure 3 illustrates the fact that the antiphase solitons@in ~a!#
interact as mutually repulsive particles while the in-pha
solitons @in ~b! and ~c!# interact as mutually attractive par
ticles. Significant exchange in all three conserved quanti
takes place in~c!, while in ~b! the change in amplitude
~norms! of solitons is small. As Eq.~13! predicts, the coor-
dinates of the collision point (jc ,tc) do not depend onDgc .
For soliton parameters in Fig. 3 we setaj51, Vj560.05,
dj578, and perturbation parameters areDt50.025, and
e520.02.

In Fig. 4 we plot velocities of the solitonsVj8(Dgc) after
collision. We show only the vicinity ofDgc50, where, in
line with Eq. ~15!, inelasticity of the collision drastically

FIG. 3. Examples of soliton collisions for~a! Dgc5p, ~b!
Dgc50, and ~c! Dgc520.08. The collision in~a! is practically
elastic, and collisions in~b! and ~c! are strongly inelastic. Top im-
ages are the density plots for Re(c).0.3. Bottom images are the
pseudo-three-dimensional plots foruc2u. Perturbation parameter
are Dt50.025, e520.02, and the solitons’ parameters a
aj51, Vj560.05, anddj578.
9-4
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CHAOTIC CHARACTER OF TWO-SOLITON COLLISIONS . . . PHYSICAL REVIEW E 66, 046609 ~2002!
increases. One can see from Figs. 3 and 4~a! that inelasticity
of the collision is very sensitive to the relative phase of so
tons only in a narrow vicinity ofDgc50; in the rest of the
domain @2p,p) the collision is practically elastic, as it i
usually expected in weakly perturbed systems.

The curves in Fig. 4~a! demonstrate chaotic behavior a
uDgcu becomes of the order of 1024. The blowup of this
region, presented in~b!, reveals the existence of interva
with apparently chaotic behavior ofVj8(Dgc) alternating
with the intervals of smooth behavior. FunctionVj8(Dgc)
manifests the property of self-similarity, illustrated by th
subsequent blowups in Figs. 4~b!–4~d!. This self-similar pat-
tern is related to the fractal soliton scattering.

The origin of fractal structure of functionVj8(Dgc) has
been explained in Ref.@15# for SGE and in Refs.@16,17# for
NLSE. In the NLSE perturbed by the discreteness or
quintic term with e,0, solitons attract each other with
weak force. This type of attraction appears only in the pr
ence of perturbation and it is different from the attracti
between in-phase solitons, which exists also in the un
turbed system. The attraction, induced by perturbation
responsible for the fractal soliton scattering. As a result
inelastic collision, solitons can gain a small relative veloc
such that they cannot overcome mutual attraction. In
situation the solitons collide for the second time. In the s
ond collision the solitons can acquire an amount of kine
energy sufficient to escape each other. However, there e
a finite probability to gain the kinetic energy below the e
cape limit. While solitons keep colliding, they form a two

FIG. 4. Fractal scattering of two solitons, presented by veloci
of solitons after collisionVj8 as functions of relative phaseDgc . In
~b!–~d! the subsequent blowups of the region nearDgc50 are
shown. Figures inside the smooth parts of the curves denote
number of collisions before solitons escape from each other. So
parameters areaj51, Vj560.01, anddj575. Perturbation pa-
rameters areDt50.2 ande50.
04660
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soliton bound state. The greater is the number of collisio
before the escape, the longer is the lifetime of the bou
state. Every smooth part of functionVj8(Dgc) in Fig. 4 cor-
responds to a specific number of collisions before solito
escape each other. These numbers are marked in the fi
for visible smooth parts in all blowups.

One can notice from Fig. 4 that there is the inverse sy
metry of the curves with respect to the origin, and the inv
sion is opposite in odd and even blowups.

The fractal structure of Fig. 4 proves the chaotic nature
the soliton scattering. If the relative soliton phaseDgc is a
random variable, then the result of a particular collision ca
not be predicted and it can be described only probabili
cally. Sensitivity of the result of collision to relative phas
Dgc becomes extremely large whenDgc nearly satisfies con-
dition ~15!.

The lifetime of two-soliton bound states is discussed
detail in Ref.@17#.

Here we would like to clarify the difference in nature o
chaotic scattering in our case from the reported, e.g., in R
@11,12,14#. In any case the fractal scattering can be obser
in the presence of only attractive perturbation, when t
mutually attracted solitons can escape each other only if t
have sufficiently large relative velocity. It has been repor
that, with a finite probability, two solitons do not overcom
mutual attraction even when they collide with a veloc
greater than a threshold value because a part of their kin
energy can be transferred into a soliton internal mo
@11,12,14#. Energy of the internal modes can be transferr
back into soliton kinetic energy during the second~or third
etc.! collision and the two-soliton oscillatory system brea
up. The number of collisions before the breakup and
breakup velocity are very sensitive to the parameters of
lision and thus the results of collisions have a fractal str
ture @11,12,14# as a function of collision parameters. Thi
however, occurs only if the perturbation is sufficiently larg
Otherwise the soliton internal modes cannot be excited.
the other hand, too big perturbation kills the effect beca
of the fast radiation decay of the two-soliton oscillatory sy
tem.

In the present paper, the perturbation parameter is
small for soliton internal modes to be excited. Instead
excitation of internal soliton modes we demonstrated
possibility of radiationless energy transfer directly betwe
kinetic and internal energy of the solitons~interchange in
solitons’ amplitudes and velocities!. This energy exchange
together with mutual attraction between solitons give
fractal scattering picture similar to that observed by oth
authors @11,12,14#. The physically important difference i
that in our case the radiation losses are very small and
time of the oscillatory system can be very long. We observ
breaking up of the oscillatory system into independent s
tons after many hundreds of collisions, when the relat
phaseDgc was properly adjusted.

B. The role of discretenessDt, quintic term e,
and collision velocity V

In order to study the influence of discreteness only, we
e50. For a fixedDt we calculateNj8(Dgc), Pj8(Dgc), and

s

he
n
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Ej8(Dgc) after collision for DgcP@2p,p) and compare
them with the corresponding quantities before the collisi
The results prove the suggestion that inelasticity of collis
increases in the vicinity ofDgc50. In Fig. 5, the maximum
values ofDN1 , DP1, andDE1 due to collision are shown a
functions ofDt. One can see that weak discreteness ind
causes relatively strong inelasticity of collision. As an e
ample, forDt50.1, the maximum changes inN1 , P1, and
E1 are 2.5%, 11.8%, and 8.2%, respectively.

We do not plot changes inN, P, and E for the second
soliton because they are practically the same as those fo
first one taken with the opposite sign. The difference is in
third digit within the whole domain ofDgcP@2p,p). This
fact suggests that the radiation is very small. The soli
parameters in Fig. 5 are equal toVj560.05, aj51,
dj575.

In Fig. 6 we study the influence of the quintic term o
maximum possible changes inN1 , P1, andE1. To minimize
the influence of the discreteness, we setDt50.025, which
causes~see Fig. 5 fore50) the maximum changes inNj ,
Pj , andEj such as 0.17%, 0.05%, and 0.5%, respective
The soliton parameters are the same as in Fig. 5. For
quintic perturbation, inelasticity of the collisions is strong
well. Fore560.02, the normNj ~or amplitude! of a soliton,
its momentumPj , and energyEj change due to collision by
more than 10%, 100%, and 30%, respectively.

We emphasize again that such enormous sensitivity of
effect to Dt and e takes place only in a narrow interval o
the soliton relative phase around the pointDgc50. Outside
of this interval in the domain@2p,p), the influence of per-
turbations is several orders of magnitude weaker.

Another important parameter is the collision velocity th
is V12V252V in the case of symmetric collision. The de
pendences, depicted in Fig. 7, manifest rapid increase in
elasticity of collision with decrease in collision velocityV.
The inelasticity of collision is very strong forV!1 and it is

FIG. 5. Maximum possible changes ofN1 , P1, andE1 due to
collision as functions ofDt at e50, aj51, Vj560.05, and
dj575.
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weak forV;1. It is clear from the form of solution~7! and
it was also verified numerically that inelasticity of collisio
becomes stronger in the caseuV12V2u→0, which is more
general than the caseVj→0, studied numerically. Figure 7
was obtained fore520.02, Dt50.025, aj51, and dj
575.

Now let us consider influence of collision velocity an
magnitude of perturbation parameter on the fractal scatte
pattern. In Fig. 8~a! we plot the velocity after collision for
the first soliton,V18 , as function of (Dgc) for Dt50.3 and
different collision velocitiesVj taken from the intervalV1
52V2P@0.1,1.1# with the step 0.1. The width of the inter

FIG. 6. Maximum possible changes ofN1 , P1, andE1 due to
collision as functions ofe at Dt50.025, aj51, Vj560.05, and
dj575.

FIG. 7. Maximum possible changes ofN1 , P1, andE1 due to
collision as functions ofV5V152V2 for e520.02, Dt50.025,
aj51, anddj575. The inelasticity of collision is very strong fo
V!1 and it is weak forV;1.
9-6
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val of (Dgc), where collisions are inelastic, increases
increase in collision velocity. The radiation grows as w
however remains small. In Fig. 8~b!, the functionV18(Dgc) is
plotted forV152V250.3 and different discreteness param
eter DtP@0.01,0.35# with the step 0.05. Inelasticity of th
collisions becomes stronger as magnitude of perturbation
rameter increases.

It is interesting that the chaotic behavior of functio
Vj8(Dgc) can be observed in Fig. 8~a! only for sufficiently
small collision velocities and in Fig. 8~b! only for suffi-
ciently strong perturbation. This means that, in a system w
perturbation of a certain magnitude, the solitons can col
only once for anyDgc if their collision velocity is bigger
than some limit.

On the other hand, near the pointDgc50, for solitons
with small collision velocity, e.g.,V;1023, the nonradiating
collisions with significant relative exchange in physica
quantities take place even for the discreteness parameteDt
of the order of 1022. Therefore, the mentioned above calc
lation accuracy, for which the discreteness can be neglec
should be estimated separately for different collision velo
ties V.

One more remark is obvious from Fig. 4. Although t
results of collision are extremely sensitive to the relat
phase of the solitons, the height of the peaks of functi
Vj8(Dgc) remains the same in each blowup. This means
maximum intensity of the effect is determined only by t
strength of the perturbation@Fig. 8~b!#.

FIG. 8. Characteristic changes in chaotic scattering pattern
to variation of~a! collision velocity and~b! perturbation parameter
Variation ranges areV152V2P@0.1,1.1# with the step 0.1 forDt
50.3 in ~a! and DtP@0.01,0.35# with the step 0.05 forV1

52V250.3 in ~b!. For both~a! and ~b! we takeaj51 ande50.
The width of the interval of inelastic collisions increases with
crease in the collision velocity. The inelasticity of the collisio
becomes stronger as the magnitude of perturbation paramete
creases. The chaotic behavior cannot be observed for anyDgc if the
solitons’ collision velocity is bigger than some limit, determined
the strength of the perturbation.
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C. Compensation effect

In Fig. 9 we plot changes inN, P, andE for one of the
solitons due to the collision with another one as functions
solitons’ relative phaseDgc . Three curves in each part of th
figure correspond to different sets of perturbation paramet
while soliton parameters are the same (aj51, Vj560.01,
anddj575). Open circles show the case ofe50.0105 and
Dt50.025. It has been mentioned in Sec. III B that for th
value ofDt the discreteness effect can be neglected and
dominant role is played by the quintic perturbation term. O
the other hand, solid circles show the influence of discre
ness:Dt50.2 ande50. Finally, solid squares show the s
multaneous action of both perturbations:Dt50.2 and e
50.01008. One can see from Fig. 9 that the discreteness
the quintic term withe.0 make the effects of the opposit
sign.

A fact of the exceptional importance is that, for proper
chosenDtÞ0 and eÞ0, these two perturbations compe
sate each other, and collisions become practically elastic
any relative phase parameterDgc ~see the curve, marked
with squares in Fig. 9!.

This remarkable property can be important in applicatio
where the strong inelasticity of soliton collisions is an u
wanted consequence of an inevitable perturbation in the
tem. Effect of such a pertubation can be suppressed by
turbation of another type if the latter can be introduced a
controlled artificially.

Another merit of the compensation effect is the possibil
to establish correspondence between different kinds of
turbation. In Fig. 10 we show the relation betweenDt ande
when the influence of two perturbation terms in the rig
hand side of Eq.~2! compensate each other and soliton c
lisions in the presence of both perturbations become alm
elastic. Practically same result was obtained for symme

ue

in-

FIG. 9. Changes in~a! N1, ~b! P1, and~c! E1 due to collision as
functions of relative phase of solitonsDgc for different sets of
perturbation parameters:e50.0105,Dt50.025~open circles!, Dt
50.2, e50 ~solid circles!, andDt50.2, e50.0105~squares!. Pa-
rameters of the solitons areaj51, Vj560.01, anddj575.
9-7
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(aj51, Vj560.05, dj575) and asymmetric (a151.1,
a250.9, V150.05, V2520.1, dj575) soliton pairs. The
dependencye(Dt2/24) can be approximated by a straig
line with the slope about 6.1 for each pair of solitons. W
Fig. 10 in mind one can say that it is enough to study infl
ence of only one weak perturbation and then the effec
perturbation of another kind can be predicted.

IV. DISCUSSION AND CONCLUSIONS

It was predicted and then confirmed numerically that, i
narrow range of the relative phase of solitons the collisio
are strongly inelastic even for a very weak perturbati
when no internal soliton modes can be excited. A compa

FIG. 10. Relation betweenDt ande when the influence of two
perturbation terms of the right-hand side of Eq.~2! compensate
each other and soliton collisions in the presence of both pertu
tions become almost elastic. Practically the same result was
tained for symmetric (aj51, Vj560.05, dj575) and asymmet-
ric (a151.1, a250.9, V150.05, V2520.1, dj575) soliton
pairs.
e
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tively large exchange in norm, momentum, and energy
curs with practically no radiation so that conservation la
~3!–~5! are fulfilled with a high accuracy for the two-solito
system.

Since the effect was predicted in Sec. II from the analy
of the unperturbed NLSE, one can deduce that actual typ
perturbation is not really important. Moreover, in Sec. III
we established a relation between two different perturba
terms in the sense that they cause the sameN, P, and E
exchange during inelastic collision. It is likely that the tot
effect of several weak perturbations can be presented
superposition of the contributions from each sort of pert
bation. In particular, the effects of two different perturbatio
can compensate each other. The compensation mecha
may be used in applications to suppress an inevitable pe
bation by introducing a controlled perturbation of anoth
type in the system.

Our results can significantly change the understanding
soliton gas model. In the presence of even weak perturba
the collisions of solitons can be inelastic. This is especia
important in the case when solitons have small relative
locities because, in this case, the probability of inelastic c
lision increases~see Sec. III B!.

The fractal scattering pattern proves the chaotic chara
of soliton collisions in weakly perturbed NLSE.
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